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SUMMARY

A central limit theorem for normalized sums of random variables that form an
autoregressive integrated moving average (ARIMA) process is developed. The need for such a
limit theorem is discussed in connection with modeling total compensation costs associated with

insurance or medical claims.
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1. Introduction

In order to make the discussion reasonably self contained, it is necessary to introduce
autoregressive integrated moving process and related concepts. For a complete development and
discussion of the mathematics and applications of these processes, refer to Brockwell and Davis

(1992), upon which the present notation and discussion is based.

Consider a fixed probability space (2, 3, P) on which all subsequent random variables
will be defined. A collection of random variables (Zt, 1=0, 1, ¥2, ...} is said to be a white noise
process if EZt=O . E(Zt2)=02, for all t, and E(ZtZs)=0 for all s, t with s#t. This is denoted by
{Zt}~WN(0,02). If the Zts are also independent and identically distributed, this is indicated by
{ Zt}~IID(0,62). { Yt’ t=0, £1, 2, ...} is said to be an autoregressive moving average process
with autoregressive order p and moving average order q, denoted by {Yt}-ARMA(p,q), if Yt
satisfies a set of difference equations of the form (the Q;s and Gis are fixed real constants)

Yt-(plYt_1-<p2Yt_2-...-<pth_p =248,Z, ,+0,Z ,+.+6 th_q i (¢))
for all integer t, where {Zt}~WN(0,0'2), and the polynomial (p(z)=1-<plz-q>222-...-(ppzp has no

roots on the unit circle {z:lzi=1} in the complex plane. Introducing the back-shift operator B,
where BYt=Yt-l’ BJYt=Yt_ i for integer j, (1) can be written compactly as

oB)Y ~6(B)Z, @
where 9(2)=1-9,2-..-9,2P, and 8(z)=1+0 [240,27+..40 g2 By definition, EY,=0 for all t. The




process {Yt’ t=0, *1, ...} is said to be an ARMA(p,q) with mean y if {Yt-u, t=0, %1, ...} is an

ARMA(p,q) process. The condition
¢(2)#0 for Izl=1

insures that the process {Yt, t=0, *1, ...} satisfying (1) is stationary, which means that the
autocovariance function y(s,t)=cov(Yt, Y s) depends only on lt-si, so that it can be expressed as

Ty(h) =cov(Y,, Y, .p) 3)
without ambiguity. Moreover, if ¢(z)#0 for izl=1, then the difference equations (1) have a
unique solution given by

Yt=2j=-oo\l’jzt-j @

where the series converges almost surely and in mean square, the coefficients [wj} satisfy

Ej__:_ool\yjkoo,
and {wj} are the coefficients in the Laurent expansion 0(z)/¢(z) = EJ:M\yjz], valid for z

satisfying r<lzl<1/r, for some re (0,1). In some applications, it is desirable to require that the

representation (4) have \vj=0 for j<0, so that Yt is expressed as a linear combination of current
and past Zts. This is true if @(z)#0 for izI<1, i.e. all the roots of @(e) lie outside the unit circle in

the complex plane. Such a process is then called a causal ARMA(p,q). It can be shown that as
long as @(z)#0 for Izl=1, an ARMA(p,q) process always has a causal representation. That is, it is
always possible to redefine the white noise process and the polynomial @ so that the process is
causal. It will be assumed that all ARMA(p,q) processes discussed herein are causal.

ARMA processes are useful in describing or approximating a wide variety of stationary
processes whose autocovariance functions approach zero as the lag approaches infinity. A great
many methods have been devised for estimating the orders p and g, and the unknown ;s and Ojs

in (1) for a given set of observations. For example, see Box and Jenkins (1970), Brockwell and
Davis (1991), and Priestley (1981). Often however, it is necessary to model various types of
nonstationary processes, for example, those with additive components of trend and seasonality.
Processes containing polynomial trend and/or periodic behavior can be modeled essentially by

allowing the autoregressive polynomial to have one or more roots on the unit circle in the

3.




complex plane. One such type of model is called the autoregressive integrated moving average
(or ARIMA) process. These are particularly useful for modeling processes without a seasonal
component, but which are "explosively” nonstationary, as is the case when the series has a

deterministic or stochastic polynomial trend. ARIMA processes are defined as follows.

Define the difference operator V = (1-B), VOEI, and Vj=V(Vj°1) for j21. Letd be anon
negative integer. The stochastic process {Xt, t=1-d, 2-d, ..., 0, 1, 2, ...} is called an ARIMA

(p,d,q) process if VdXt=Yt where { Yt} is a causal ARMA(p,q) process with mean p. Thus, for

example, if X =A+A t + . +Ay 115]

+ Y: where {Y:} is a causal ARMA process and the Ais
are arbitrary random variables, then {Xt} is an ARIMA(p,d.q) for some p and q. This follows

easily from the result that Vdpt=0 for any polynomial pt=A0+A1t+...+Amtm of degree m<d.

In the next section, the proper centering and normalization of ZLlXt to achieve an
asymptotic normal distribution is studied when {Xt} is an ARIMA(p,d,q) process and the white
noise process {Zt} appearing in (1) and (2) is actually an HD(O,GZ) process. Interest in this

problem is stimulated by the modeling of medical or insurance claims. A typical model for
insurance claims is the so called compound Poisson process. See Prabhu (1980), for example,
for extensive discussions of this model in the insurance risk context. Here, claims are generated

according to a nonhomogeneous Poisson process {NT, T20}, and successive claim costs are
assumed independent of { NT’ T20}, and to form a sequence of iid random variables, {Yt’ t21}.
Thus, total claim costs from the time period [0,T] are given by _

Cr=I.TY, NG
where a sum with upper index O is defined to be 0. If E(NT)=m(T), m(T) T as T-», and

(Y t}~IID(LL,1.'2 ), then it follows from elementary limit theory that
Cr-m(T)u
[+ ]7

as T-»e0, where N(m, 1:2) denotes a random variable that is normally distributed with mean m

== N(0,1) (6)

and variance 1:2. The notation Xn-) X as n-»c0, means P{XnSx}-»P{XSx} as n-»eo, for all x at
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which the function x+»P{X<x} is continuous. The result (6) allows the distribution of total claim

cost C.r to be approximated for large T. This model is important to the insurance industry, since

if premiums are collected at a constant rate p per unit time, and the firm starts initially with a

cash reserve of c, then the quantity ¢ + pT - CT represents, in a simplified setting, the monetary

reserve of the insurance company at time T, and the first time that this process hits the value

zero, the company becomes insolvent.

The miodel (5) is also plausible for describing medical claims / compensation costs
associated with accidents or hazardous materials exposure. In this context, the model (5) can be
made more realistic by allowing the claim amounts to be correlated and/or to have a trend. Legal
(and other) precedents / interventions and economic factors can affect successive claim costs to
the extent that an ARIMA(p,d,q), with suitable p, d, and q, would be a more appropriate model.
If this is the case, then in order to develop limit theorems similar to (6), it is necessary to study

the asymptotic distribution of 2:1=1Xt, where {Xt} is an ARIMA(p,d,q) process. To facilitate
this, it will be assumed from now on that the white noise process {Zt} that appears in (1) and (2)

is actually an IID sequence, i.e. that {Zt]--IID((),CJ2 ).

The case where {Xt-p}=(Yt}~ARMA(p,q) is a special case of Theorem 7.1.2 of

Brockwell and Davis (1992), which shows that

n V2 (X )= NO,v) as nosee, 9
where
V2 = 1y OH25 Yy ), Yy () = cov(Y,, Y, p)s ®)

provided that v2>0. Then the factor (u2+4:2) in (6) becomes (u2+v2). Since 1:2 corresponds to

yY(O), the asymptotic variance of CT could be larger or smaller than in the IID case, depending

12

on the values of the autocovariances. When (Xt} is an ARIMA(p.d,q) process, then n”/“ must

be replaced by 09 V2 o the proper normalization of 2?=1Xt’ as will be seen in the next section.




2. Central Limit Theorem for a Class of ARIMA Processes

Let {X,, t=1-d, 2-d, .., 0, 1, 2, ...} be an ARIMA(p.d.q) process, satisfying VOX =Y +y
where { Yt} is a causal ARMA(p,q) process as in (1) and (2) with {Zt}~IID(O,0'2). Define the
usual operation of generating factorial polynomials by k(i)s H" 1(k-i+l) = k(k-1)...(k-j+1) for

1=

integers j and k with j>0, and kD'=1. Thus, with k treated as a variable, it follows that for 20,

v &+ )36 191 = kOpt, )
and
) ji+1)
n @ @0t
By o= T (10)

The main result is the following theorem, which holds even for the case d=0 with the convention

that summations with upper limit Q are taken to be 0.
Theorem 1. Let 'YY(O) be the autocorrelation function of Yt=VdXt-p., and suppose that
YY(O)+2Z;°=17Y(h) >0. Then, as n-»oo, the distribution of
Wy, (X33 vix - DDt - peera-n)Par)
[yY(O) o [v+a-D DT+ 2 2Ly EP R (vad- ) Ovahea-1 )(d)]”z

(11)

converges to that of N(0,1).

Before developing a proof of Theorem 1, a few remarks and a corollary will help clarify
this result. First, the centering and norming sequences in Theorem 1 are chosen to match the
mean and variance of (11) with that of N(0,1) for each n>1, not just in the limit. This tends to

make the normal approximation more accurate. Because {Yt}~ARMA(p,q), and therefore Yt
has the representation (4), it can be shown that the series (8) converges absolutely, and
2
27 yo(h =02( A
'Yy(o)+ Zh=1'Yy( ) Z_]=OWJ
where {\yj} are the constants in the representation (4) with \vj=0 for j<0 by causality. By

elementary asymptotic analysis of sums of integer powers, both of the sums on v appearing in
2d+1/9341) as n-»ee. Finally, the polynomial with
stochastic coefficients that appears in the numerator of (11) leads, after summation, to a term that

the denominator of (11) are asymptotic to n

-6




is equal to u(n+d)(d+l)/[(d+1)!]+ Op(nd) as n-»o0, again by simple asymptotic analysis of sums

of integer powers. Hence, the centering constant in (11) can be modified, and the normalization

constants simplified, yielding the following corollary.

Corollary 1. Under the conditions of Theorem 1, n llz'dZt ( H+d- 1)(d)/d')

N(O, coz) as n-»oo, where
w?=d+1) a2 vy 0025 vy ] (12)

The proof of Theorem 1 requires several lemmas. Ultimately, the goal is to express

2n=1Xt as a weighted sum of the Y which have the representation Yt ZJ JZ” and then to
exploit the fact that {Zt}~IID(0,02) in order to apply a classical central limit theorem. The first

lemma is fundamental in this goal.

Lemma 1. Suppose that VdXt=Yt+u, t21. Then for t21, Xt can be expressed as

3 1 gix a+i-n® . perd-H@ (v+d-2)@-D
- . OI 1)

ar =1 VT @)t (13}
and for n21 .
Z (n+i)(‘+1) +p.(n+d)(d+1) R (v+a-H@D -
t=1 X 0" +1) (d+1)! =] n-v+l g4

Proof: It may be assumed without loss of generality that p=0. The first formula follows
from an induction argument on d. If d=l, then for k21 X,-X, ;=Y,, by definition, and

summing this gives X —X0+2',k =1 -XO+ Yt v+’ 5° (13) holds for d=1. Assume (13)

holds for some d=1, and rewrite it as
d-1 _; D). t .
X,= L PXe-nOn oY v, a2 @ e (1s)

Suppose that Vd+lxt=Yt. Then det=2;=1Yj + deo. Substituting t-v+1 for t in this, and

using (15), the induction hypothesis, it follows that
d-1 oi . 1\@) t-v+1 d d-1)
X, = YV Xi-D VAl +2v (G521 + VX kv ' a1t

t

d i N t-v+1 (d-1)
Zi=O(V1XO)(t+x-1) Y7t +2v=1(2.=1 ¥ kw42 -1t

d . .
I\ 2 SIS IR AR L C

-




by applications of (9) and (10), a reversal of the order of summation, and a change of variable.
This completes the induction proof of (13). Relation (14) follows by summing relation (13) from

t=1 to n, reversing the order of summations, and using (9).

Lemma 2. Let (Z,)~IID(0,0%), and for each n21, let a_, 1st<n, be a sequence of

constants satisfying
a

aX) e ‘“ -0, as n-soe, (16)
Zl—l t,n
a Z
LetX, [ "“2‘ T+ St<n, and Sp=Lie1Xyn- Thenas n-see, S =sN(0,1).
o 2
=1%,n

Proof: "_ l?.(X2 )=<52 for ali n. Lete>0. Then
=] t,n

- 2
2t— ( t,n {IX l>e}) s0 2E(Zl 1{Z 1MaXq e t’n[c 2‘,‘: 1a\t’n 1>e}) -0

as n—+oo by the dominated convergence theorem. Hence, by the Lindeberg - Feller Central Limit
Theorem (Durrett (1991), p. 98), the result follows.

The final lemma needed in the proof of Theorem 1 is proposition 6.3.9 from Brockwell
and Davis (1992). A sketch of its proof based on convergence of characteristic functions is
given there. Here, a slightly different proof is presented in detail. For random k-vectors Xn and

X, X n-bX as n-»eo means that P{Xne A}-+P{Xe A} as n-»o for every k-dimensional Borel set

A whose boundary JA satisfies P(XedA}=0, which is equivalent to the condition that
Ef(X n)-»Ef(X) as n-»eo for every bounded and continuous real valued function f on the

k-dimensional real numbers. This is in turn equivalent to Ef(Xn)-bEf(X) as n-»oo for all bounded

and uniformly continuous real valued functions f on the k-dimensional real numbers.

Lemma 3. Let Xn, n=l, 2, ... and Ynj’ j=1, 2, ...; n=1, 2, ... be random k-vectors such

that

Yy J--v)YJ as n-»oo for each fixed j

(i) Yj-DY as j-»oo




(iii) limj_»olim supn_waP{ IXn-Y njl>(~:}=0 for every €>0, where lel signifies the usual

Euclidean norm.

Then X n =Y as n-»co,

Proof: Let f be a bounded uniformly continuous real valued function defined on the
k-dimensional real numbers. It is sufficient to show that IEf(Xn)-Ef(Y Y-0 as n—oo, Fix an 0.

There exists a 8>0 such that If(x)-f(y)I<e for any x and y satisfying Ix-yl<3. By the triangle
inequality,
IEf(Xn)-Ef(Y N< Elf(Xn)-f(Y nj)l + IEf(Y nj)-Ef(Yj)l + |Ef(Yj)-Ef(Y)|.

Denoting an upper bound of the function f by C, the first term on the right side of the inequality
is bounded by

2C P(an-Ynj|>8} +€.
It follows from (i) that for any j,

lim sup L = (0.4 n)-l:".f(Y N<e+2Clim sup,, _’“P{Ixn-Ynjl>8}+lEf(Y j)-Ef(‘l .

Taking the lim supj_»o on both sides and using (ii) establishes the result, since £>0 was
arbitrary.

Proof of Theorem 1: By Lemma 1, the remarks following Theorem 1, and the fact that

ifc —»cand Zn-bZ as n-»oo, then ann-ch as n-»eo, it suffices to show that

@2y v v D

GIZ: le ad+1/2 |

as n-»eo, By representation (4) with \vj=0 for j<0 by causality, Yt=g° =0ijt- j for all t. Define
Q=L , (EJ‘: VZnvarg) o DD

Changing indices of summation by letting t=n-v+1, and then j=t-k, it follows that
U = 2k=1-m(2t=1 V. (n-t+d) /‘“)Zk + =0( _ Vi@t /‘“)Zk

’ n @)
+2’k=n-m+l(2:=kwt-k(" t+d)"/d) Z, .
Denote these last three double sums respectively by Q;m(l), Q;m(Z), and Q;m(3). Then for

=»N(0,1) a7

9.




) * -d-

fixed m, Q (1) =0 (nd), and thus n d 1/ZQ:m(l) l-)>Oas n-oo, Also, for large n,
Var@Q_(3)) < Gznzd(Z = o, ya1f so that Var(n@Y2Q” (3)) +0 as n-soo and hence
n'd l/an m(3) —»0 as n-»o0, Denoting the coefficient of Zk in the second double summation by

a it follows by the summation-by-parts formula that

(@
-k-m+d .
= () 229 o

where the O(nd'l) term is uniform in k, 0<k<n, for fixed n. Thus, EE=Oai n=O(n2d+1), and

hence (16) is satisfied, and by Lemma 2, and the fact that (18) implies that

2d+1
2
vl a + 029
k=0%%,n" (2d+l)d'2 (Z“O _])
it follows that for each fixed m,

12 * m 2

eyt arq (Zovs) .

= d+ 1/2 poy g O, o 'y (19)

o ol5 | (Eio;

and obviously, as m-»eo, the last random variable in (19) converges in distribution to N(0,1). To
conclude (17) from Lemma 3, it is sufficient, by Chebychev’s inequality, to show that
12,,¢0 (v (@
2 ! Z . ) (v+d- !
) ) valo (2d+1)"/“d 2~=1(zi=0‘"1 nve14) (V-1
1M >oo T SUPY oo VAN Npym” nd+172 GI = I
Li=0¥j

Let D(n,d) = oli;o\ujl nd+1/2 (2d+1)’1/2d!'1. Notice that
12,90 (v (d
E(Q (2d+1) d!Zv=1(zi=oWjZn-v+l-j) (v+d-1) /d!)z _
nm d+1/2 oo -
) i °Izj=0\"jl
n (v+d-1) oo
Lyl Zj=m+1wjzﬂ'\’+1'j)2 )

D(n,d)
<v+d-1><‘”)2 .

2 o > !
D (“'d)a[2j=m+12k=m+1ijk2v=l( al

p e )@ueagren@]  Cimar¥)
2), 2m+1§c<jijkzv=l+j-k 42 ]" (23—0‘4’)

as n-»co, The result now follows by letting m-»eo. The final form (11) of Theorem 1 follows by

E

]
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using (13) and (14) to verify that (11) has mean 0 and variance 1.

Conclusions

A central limit theorem has been developed for centered and normalized sums of rar.dom
variables that constitute an ARIMA(p,d,q,) process. If {Xt} is an ARIMA(p,d.q) process
satisfying det=u+Yt with {Yt}~ARMA(p,q), it is seen that the proper normalization and

centering sequences in b;ll 2?=1(Xt—a‘) are bn=nd+ 12 and at=u(t+d-1)(d)/d!.

Among other applications, this central limit theorem is important in making large sample

N.
approximations related to sums of the form Zt*’{xt where {NT, T20} is a nonhomogeneous

Poisson process and {Xt} is an ARIMA(p,d,q) process, independent of { N'I" T=20}. This model

provides a realistic representation of the total claims cost associated with medical claims /

compensation costs associated with accidents or hazardous materials exposure.
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